
-

/ A D AOM9 496 WISCONSIN UNI V MADISON MATHEMATICS RESEARCH CENTER FIG 16/11
OPERATOR—VALUED CHANDRASERHAR H FUNCTIONS. (U)
DEC 77 C T KEU.EY DAAG29—75—C—00 24

UNCLASSIFILD *C TSRflB13

!3~~~s



____________ 

~ 
~2 8

—— 
~~~~~~•~ ~ 3o IIIII~~~~

~ 
~~

• HIlI~• 11111’ .25 IIUI~ ~nn~
MICROCOPY RISOLUTION TEST CH~ RT

NA ’~~N~ I~ J RI~ (J



‘ -

MRC Technical Sum mary Report # 1813

OPERATOR-VM..UED CHANDRASEKHAR
H-FUNCTIONS

C. T. Kelley

~ t ,
:Mathema t ics Research Center

C .~~~~. Unive rsity of W isconsin—Mad ison 1

610 Walnut Street
Madison , Wiscons in 5 3706

December 1977

(Received August 5, 1977) 0 0 C

2

Approved for public release
Distribution unlimited

sponsored by

U. S. Army Research Office Nationa l Science Foundation
P. 0. Box 12211 Washing ton , D.C . 20550
Research Triangle Park
North Carolina 27709



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 

• 

— —
‘ 

S 

— — — —

~c ~ H; UNIVERSITY OF WTSCONSIN — MADISON
,
~~~~~ -- H MATHEMATICS RESEARC H CENTER 

~- OPERATOR-VALUED CHANDRASE KEAR H-FUN CTIO~~

:. . C. P.
- ~~~

_ _ ./_ .
~ 

Technical Su~~~ary Report # 1813
December 1977

ABSTRACT

Operator valued analogs of the Chandrasekhar H-function that occur in the

study of neutron transport in a slab with continuous energy dependence and

anisotropic scattering satisfy a system of nonlinear integral equations . An

appropriate Banach space setting is found for the study of this system . We

show that the system may be solved by iteration . We extend the domain of

analyticity of H
r and H~ by means of bifurcation theory .
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SIGNIFICANCE AND EX PLANATI ON

The Chandrasekhar H-equation is the following non-linear integral equation :

I
H (~~) = 1 + ~H (p) I ~ 

H(vhj (v)du
o p

where 4 is given , ~ is a parameter , and H is the unknown . This equation

is of importance in a variety of physical situations involving transfer of

energy by radiative scattering processes, e.g.  neutron transport .

The H—equation is related to convolution equations of the following type

(*) f ( x )  - f k(x - y ) f ( y ) d y  = g ( x )  -

In anisotropic radiative transfer, the following generalization of (*)

occurs

(**) f(x,w) - f 1 k(x — y,w,w ’)f(w’)dw ’dy = g(x,w) .

The equation (**) is studied in this paper by treating it as an equation

of the form ( * ) •  We must then interpret k as an operator , i.e.

k(x — y ) f ( y )  = J k(x —
An explicit formula for k is given by equation (1.8) in the paper .

We consider here an H—equation in which H is regarded as an operator-

valued function on L (Q) , i.e.

H ( p ) f  = f ( w)  — I h(3J ,u,w ’)f(w ’)dw ’

This generalization appears in the study of radiative transfer in a slab with

anisotropic scattering and continuous energy dependence. We show that we may

solve our equation by iteration and obtain a bifurcation result, i.e. we show

j that in some cases there are two solutions. Numerical and asymptotic results

of interest in transport theory may follow from our work.

The responsibility for the wordinq and views expressed in this descriptive
summary lies with MRC , and not with the author of this report. 



OPERATOR-VALUED CHAN DRA SEKH AR H-FUN CTIONS

C. T. Kelley

I. Introduction

In 1lO J , Mullikin considered Wiener-Hopf factorizations of certain operator-valued

functions that arise in the study of one—speed neutron transport in a slab w±th anisotropic

scattering . This factorization has the form

(1.1) (I — ~K(A ) )H (A , H • ~A ,~~) I

In (1.1) K is the Fourier transform of a compact operator-valued function K(x) and

I is the identity. Hr 
— I and H 1 

— I are Fourier transforms of compact operator-valued

functions r and F1 whose supports lie in (0,..). ~ is a complex parameter and

so that

( 1.2) sup I I K ( X )  II = 1

I~ (1.2), I f . I ~ denotes spectral radius. Mullikin derived a system of coupled non-

linear integral equations for the functions H(v ,ç) and H
1
(v ,ç), where

(1.3) H (v,~~) = H (i/v,C) , Rev > 0
r,i —

The purpose of this paper is three—fold . First we show that Mullikin ’s equations

are valid with only minor modifications in the more general case of anisotopic transport

depending continuously on energy . We develop notation that allows the nonlinear system

for H and H, to be written in a compact way in a convenient Banach space setting .r

We then show that the equations for H
r and H1 may be solved by an iterative method .

Mullikin and the author (81 have recently proved a similar result in the case of isotropic

scattering. Earlier results of this type may be found in [11, (21, and [61 . The proof

given here differs from that of [81 in that the power series expansions of H
r and H,

play a direct role.

Finally, we show that H
r and H1 are analytic in “1 - ç for 

~ in a cut

neighborhood of 1. Our proof depends on a bifurcation analysis of the nonlinear system

Sponsored by the United States Army under Contract No. DAAG29—75—C—0024 and the National
Science Foundation under Grant No. MCS75-17385 AOl.
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for H
r 

and H1. Applications of results of this nature may be found i ;i  [ 7) ,  [91,

and (111

The equation for steady state neutron transport in a slab with anisotropic scattering

and continuous energy dependence may be written as follows , (12),

(1.4) ~ (x , w) + a~J ( x , w )  = F(x,~ )

F(x,w) = S(x ,~ ) + 1 f K
0 ( u , e ’ ) i ) i ( x ,w ) dw ~

0

Here w = (E,p)€ [E
0

, E
11 1<S 2 =~~, x > O .  E denotes energy and ~ a direction vector p is

the cosine of the angle made by the vector ~ and the positive x-axis a is a continuous

positive function of F on [E
0
,E
1
1, a > 1. K is continuous on 0 x 0 and satisfies

(1.5) The integral operator K0 on C(D) having kernel K0(w
,w)o 1(E~ )

is positive in the sense of [5) and has spectral radius 1.

S(X,w) is continuous on (0,~ ) x 0 and satisfies

(1.6) f sup S ( x , w ) l d x  <
0 wED

We seek solutions i~ that satisfy the boundary conditions

(1.7) ji(0,w) 0, p > 0

lim *(x,w) = 0, ii < 0

We let C (D) and L (D) denote the spaces of continuous and essentially bounded

functions on 0 with the sup—norm. IR and ~ are the real and complex numbers.

For B a Banach space and I an interval let L~B) be the algebra of bounded

operators on B , Cotn(B) the algebra of compact operators on B, F ( I ,B) (1 < p <

the space of Bochner integrable functions from I to B.

We define K E m1N0~~), 
Com(L (Q))) by

(1.8) K(x)f(w) = f K0(w,w~)e
I 0 )

~~~~ O (xp )

In (l A ). 0 denotes the Heavyside function.

We may then convert the problem given by (1.4) and (1.7) to a Wiener-Hopf equation

for F € E1 NO
, ), L CD))

—2—
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(1.9) F (x) — 
~ 

f K(x — ylF(y)dy S(x), x ~ 0

The assumptions on and the theory developed in [4], [5] and [6] imply that (1.9)

• has a unique solution F for i d  < 1 and that the function

(I ~~(A)) = — 

~ 

K(x)e’~~dx, admits the Wiener—Hopf factorization (1.1). Let

(1 = {w E D ( p  > 0}. We state some properties of H
r 

and H1 that will be useful ir’

what follows, these properties follow easily from [10).

Prop (1.1). Let B(A,d) be any of the operators 11t r ~~ ’~~~’ 
H
~
1
r
(X
~
C)
~ 

then the

following hold

(i) B (A,~ ) — I is an analytic Com(L (D)) valued function for c i < 1, ReX > 0

(ii) B(A ,d) is a continuous L (L (D) )—valued function for JC~ < 1, ReX > 0

(iii) B (A,d) — I is an integral operator with kernel in L (D < 0) for 
~~ 

< 1

ReX ‘ 0.

Moreover if Hr 1(v , d )  is given by ( 1.3) , the kernel h
r 1

(v .w , w , d )  of H
r ~~~~~

is nonnegative on 0 x 0 , in fact

(iv) h
1 (v

,w ,w ,d) > 0 on 0 x 0 v > 0, 0 < < 1

(v) h
r

(v
~

w .(•i e , d )  > 0 on 0 x v > 0, 0 < c < 1

(vi) h1 is continuous on [0,’.) x 0 x 0 for c i  < 1

(vii) h
r is continuous on [0,’.) x 0 X 0 for c j  < 1

(viii) h
r and h1 are increasing functions of v for 0 < < 1, and of

ç for v > O , O < d < l .

—3—



II.

If A is an integral operator with kernel in L (D ~ ~~~) ,  we denote by A ’  t h a t

integral operator having as its kernel the transpose kernel of A. We define P I.

We let N denote the algebra of integral operators on C (Q) having kernels that

are in CU? x 0). We let k
A
(w,w’) be the kernel of A e N. We define

(2.1) h A h N su~~

N is a Banach algebra wi th this norm . Note that ,  for A ,B E N

( 2 . 2 )  kAS
(w

~ w ’)  = J kA (w~wO)kB (w O~w)dwO
We let N+ denote the algebra of integral operators on LU? ) having kernels which are

continuous on 0+ x 0. The norm on N
+ 

is defined by

(2. 3) h A ll = sup (k (w , w )
wE D A

F +

As in [5], [6] and [7] we consider 2 x 2 diagonal matrices of the form

A
1 

0

~2.4) A =

0 A’

where A1 and A are integral operators having kernels in LU? x 0). We denote the

space of such matrices by X and define, for A € X

(2 .5 )  lkhl~ 
= max dlk A IL~flkA I I )

2. r

*If A ,B C X , define AS and A

A 1B1 0

(2 . 6) AB =

O A ’ B’
r r

A 0
*

( 2 . 7 )  A =

0

Let X0 
be the algebra formed by adjoining the identity to X. We have

—4—
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( 2 . 8 )  Ixo 
(
~ ~

) ‘;~
(2.9) 1i~ i x = 1

0 0

When no confusion can result we drop the subscript X0 and refer to I~ as I. Let
0

CU O ,l ), x0
) = C be the space of continuous valued functions . The norm on C is

defined, for F € C, by

(2.10) IIP ’ll c = sup lIF~~ll
0(v<l 0

Define a map L : C -
~ C ( ( 0 , l ], X) as follows. For F ( v )  € C write F(v) = ~(v)I + G (v)

where G ( v )  e C([0 , l ) , x ) ,  then

( 2 . 1 1 )  k (~~.) (v ) = K0 (w,w ’) O ( — p ’) a ( E ’ ) v  + j p ’ l

+ f K~ (w,w~)8(—p 0
) 

a ( E
0

) v  + l~0 b k G ( a ( E
0

) w0
,w ’)d w0

( 2 . 1 2 )  k (~~~) , (v .w~w )  = o ( p ) K ~~(w ,w ’ ) 8 ( p )  
a ( E) v + l~l

+ f K~ (w ,w~) a ( E ) v  + 8(P)k
~ ,(~~~~

H1(v,C) 0

Defi ne H ( v ,d )  = . We have , as in ( 10),  for i d < 1, Rev > 0,
0 H’(v,d)

*(2.13) H(v ,d) = I + dL Oi ) (v,d)H(v ,d)

We consider this equation in the subspace C0 of C given by

(2.14) C
0 = {F(v) = al + G ( v )  € CIG1 

€ N , G’ € N~ for a l l  v , s E ~ }

We may then consider (2.13) as an equation in the space C0 . We defi ne T € X by

~ (0) 0
(2.15) T =  .

0 K’(O)

The assumptions on K imply that if T is considered as an operator on CCI)) x CU? )

then there are positive functions u ,  u1 in C(0) so that the vector u = (~) satisfies

— 5 —
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( 2 . 1 6 )  u - Th = 0 , 1 u ( w ) u
1(w) dw = 1 .

If F
1
,F
2 

e C([0,1),x) we say nI + F
1 

> 61 : F
2 

if a > 8 and 

~ ~~2 
almost every— ~

- -

where in [0,1 x I)xI). If u = (
~ 

) , v (r )€  CU?) x CU)) we say u > V if ur 
> V

r~

U
1 

> v
2. 

everywhere in I). For u € CU)) x CU)) and a C ]R . we say u > a if u 
~

Def ine  H (C) E by

H1
(O , d )  0

( 2 . 1 7 )  H (~~~) =

0 H’ (O ,d)
r

Note that

(2.18) H (c)H (c) (I - CT) = ‘, Rh < 1

The following lemma is crucial to what follows. The proof is similar to that in [7 ) .

Lemma (2. 1) . The limit

him H(d) = H ( l )

exists in C
0
. Moreover , H(1) satisfies 

*
( 2 . 1 9 )  H ( 1)  = I + L ( H  (l))H(l)

Proof. The second statement clearly follows from the f i r s t .

Define a map e L (C
0) by

(2 .20) L0
F = litu (LF(v)) .

\0~=

The def in i t ion  of H and (2.18)  imply

*..l * *
H (C) = I - d ( L 0

(H ) )  = H(c) (I - CT) .

For 0 < C < 1  we apply both sides of the above to the vector u and note that H (d) > I

to get

U — d (L~ (H u > Cl — C)u

Set M = L
0 

— L, we have

* 

H ( v , C )  (I — c(L0
(R )) ) _ - CH (v,d) (M(H ))

Hence , as I-I (v,ç) ~ 0 ,

—6—
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* * * *U — H (v ,d)(M(H )) u ~ (1 — C)H (v ,C)u

or

* * *H (v,d) [(1 — C)u + C (M(H )) ul < u

* * 
V
rLet v = (1 — C)u + C (M(H )) u = . By the definition of M, inf v1(w) = 

> 0, and
V t weD

jnf v (w) = a > 0, therefore hr and h
1 are bounded on I) x I) x [0,1) uniformly in C.

As 0 < H(v ,C) < H(v ,C0) for 0 < ~~ C0 
< 1, we have that

hun h~ r
(V ,W

~~
’
~~~ 

h1 ~~~~~~~ ,~~ j~~ w ’) exists in L ([0,1) ‘ 11 x I)) by the dominated
d~1 

, 1

convergence theorem.

To complete the proof one may now proceed exactly as in [71.

The lemma, implies that 12(C) is analytic in i d < 1 and continuous

on ~ 1.

The main result of this section is the following

Theorem (2.1). The sequence H given for c i  < 1

(2.21) H0 
= I

H~~1 = I + CL(Hn
)H

n

converges to H(C) in C0 
uniformly for ci ~ 1.

Proof. H(C) is the unique solution of (2.13) which is analytic in c i < 1. Let

~ ~~~ be the power series expansion of H(c) about c = 0. We have that P~ ~ 0 for
n O  

* 
N

each n, P = I , and , for n > 1, P = 
~ 

L(PI~
Pk
. Let S

N 
= ~ P .  By considering

0 n 1+k n n=0

the coefficients of the polynomials H , one can easily show -
~

iiH (C ) — H (C) ii < 1 I H ( I d l  ) — H (idl ) II ~~ I N C h )  — H (l)  Ii ~~. Ik”1) — S l i

S~ converges to H(1) by lemma (2.1), and the fact that 
~n 

> 0 for each n.

Hence, the proof is complete.

-7-
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III.

In this Section we show that H ( v , d )  is an analyt ic  C0 
v~ ’ued f u n c t i o n  of /i -

in a cut neighborhood of C = 1. We do this by showing that C = I is a branch point

of order 2 of the equation (2.13) . The proof follows the general  theme of those in

[7], [9), and Ill].

In this section Set H = 11(1), ~ = 1 — C, and G(c) = (H — H (d ) ) H
1
. it is easy

to show that G satisfies, for r > 0
—

* C *
(3.1) G(r) — HL((G(1)H) = 

1 — C 
— G(e))H — I] — G(~~)HL((G(E)H) ) .

The Frechet derivative of the map given by (3 .1)  with respect to G at (G ,t) = (0,0)

is (I — L), where L e L (C0) is given by

(3.2) L(K) = HL((l(H) ), K € C0

As in (7], [9], and (11] we consider an alternate operator M defined by

(3.3) M(K) = HM((K}i) ), K C C
0

In (3.3) M = L
0 

- L. We require

Lemma (3.1). There is P e C
0 satisfying

*Ci) P = P

(ii) P is independent of v

(i ii )  P > 0

(iv)  P — MU ’) = 0

Cv)

For the present we assume the lemma. A computaticn will show that the function - ; - ( v )  = vP

satisfies (I - L)Q = 0. Moreover if K is such that (I - M)K = 0, then the func t ion

S(v) = vK satisfies (I — L)S = 0. Bifurcation of (3.1) at c = 0 will take place if

we can show that the only solutions to (I - M)K = 0 are of the form K = aP, n € E and

that the range of (I - M) has codimension 1 in C
0
.

K
1 

0 
2For K = 

0 K ’ the operator M K has the form
r

—8—
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M~K 1 0

(3.4) M2K =

0 (M 21 ( )  ‘

Moreover M~K1 and (M
~
K
r
)’ are strictly positive elments of C([0,l],N) and

C((O,1J,N )  respectively if > 0, K1 * 0 and K > 0, 1(
r * 0. As is compact on

C
0, we have that, up to a constant multiple, P is the only solution to (I - M2)p = 0

and hence to (I — M ) P  = 0 and that the range of (I — M) has codimension 1 in C
0
.

Therefore Q(v) = vP is, up to a constant multiple, the unique solution to (I - I . )Q  = 0.

Moreover, there is A € C
~ 

such that A((I — L ) K )  = 0 for all K € C
0 

and A (K) > 0 if

K > 0 and K * 0. One may then proceed as in [7], [9] and [II) to obtain

Theorem (3.2). H(C) is analytic in “1~~~C for S sufficiently near 1, arg(l — C) ~

Moreover we have the expansion

(3.5) H(C) = H — ac1~
’2
QH + 0(C)

where Q (v) = vP, and P is as in lemma (3.1),

A(H I) 1/2

r (I - L ) Q  = 0 and a = ( A (vQ(v)) ) 0

In [7], 19).. and Ill), the functional A had a simple integral representation . In

this case, however , it i~ not clear that A can be written in a Simple way .

It remains to prove lemma (3.1) . Let u be given by (2.16) . Consider the equality

(3.6) (1 — C ) H ( O , d ) u  = (I — C ( L O
( H ( C )  ) ) u

The right hand side of (3.6) has a limit as C approaches 1, hence

(3.7) him (1 — C) H ( 0 , C ) u  = w > 0
C-*1 

—

i d i l
* * V

rIf w = 0, then (I — (L
0

(H ) )  )u = 0 and hence there is v = ‘ 
v * 0 such tha t

(3.8) v - L
0(H )v = 0 and f v ( w ) v (u j ) d~ = 1

x -

Define , for x = 
r 

€ CU)) x CU))
xl

—9—
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(x ,v )vr I r
(3.9) Px =

(X
1

,v ) v

Then P satisfies (i)— (v) . If w * 0 we have, by (2.13),

(1 - C ) H ( O , d ) u  = (1 - C)u + CL O
(H ( C ) )  (1 - C)H(0,d)u

*Hence w = L ( H  )w . Therefore v satisfying (3.8) exists and P may be defined by (3.9).

Theorem (3.2) implies , in fact, that w = 0, and hence P is unique and given by

(3.8) and (3.9).
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